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EXTREME SPEEDS AND THERMODYNAMIC STATES IN
SUPERSONIC FLIGHT

By Klaus Oswatitsch
SUMMARY

The increasing importance of high-speed flow leads to similer prob-
lems in various filelds of research which are summarized in what follows.
Typlcal of all cases 1s the conversion of high kinetic energy into extreme
thermodynamlc states with temperstures of several thousand degrees, fre-
quently connected with dissociation and ionizatlion of the gas involved.
There is also a characteristic small sensitivity to the processes dis-
cussed in the case of gases of low molecular weight (light gases).

The penetration of meteors into the atmosphere of the earth at
astronomical speeds results in temperatures higher than those of the
surface of the sun. Such temperatures may be produced in shock tubes,
with light gases used as the driving gas. For supersonic fighters the
problem of propulsion is less difficult to solve than the problem of
lerge heating, on the surface and in the combustion chamber. Finally,
for the space-travel rocket, astronomical speeds have to be reached which
require the lightest possible gases as propellants. Here agaln, dissocia-
tion processes in the combustion chamber are of considerable importance.

1. INTRODUCTION

If science deals with extreme conditions, it may appear, at first
glance, as though the record-crazy present is penetrating into the domain
of serious research. On the one hand, this is actually the case. Research
cannot and should not keep aloof from the problems of extreme technical
questions, and the following expositions are meant to be a critical evelua-
tion of publicly discussed relasted plans. On the other hand, the study of

*"Extreme Geschwindigkeiten und thermische Zustdnde beim
{joerschellflug.” Zeitschrift fiir Flugwlssenschaften, vol. 4, issue 3[h,
1956, pp. 95-108. Friedr. Vieweg & Sohn, Braunschwelg, Germany, Publisher.
(Synopsis of the lectures given at the Foreign Institutes of the Technical
Universities of Vienna and Graz in June 1955 and of the lecture at the
main meeting of the DVL in Munich on September 30, 1955.)



2 ~  NACA T 143k

extreme conditions holds a special lure for research because it leads to
new and unexpected effects. Reglons are reached which, at first, chal-
lenge engineering and physical intultlon bo¥n of experience. Obstacles
appear in unexpected places while expected Jifficultles often vanish.

The arrogance which makes us push on Into hitherto untouched flelds turns
into humility in the face of the unknown and the unexplored.

In the following discussions we attempt a maximum of clarity with a
rninimm of mathemstical and physlcal complexity. The results given can
be found in various reports in various issues of the international
scientific literature. Only a few papers are quoted explicltly. A
specialist in this field will gein in what follows - aside from a new
compilation - at most a few new epproximation formulas. However, the
author hopes to find his most appreclative readers among the experts in
neighboring fields and among interested novices. Exact derivations have
frequently been added in smsll print. = o '

2. ASTRONOMICAL SPEEDS AND THERMODYNAMIC STATES

Table 1 shows, in addition to the velocity of sound ¢ &and the
velocity of propagstion of light, approximate values for estronomical
speeds. In order to have a relationship to the customary velocity scale
of modern engineering, the velocity of sound is given also in kilometers
per hour (km/h).

Compared to technologically realized speeds, we deal in the universe
actually with "astronomical" numbers. Modern pursuit planes sttain sonic
veloclity and will be considerably faster wlthin the next few years. Rifle
projectiles, antitank and entiaircraft shells as well as naval-gun pro-
Jectiles have initial speeds of about three times the velocity of sound,
and modern liquid-fuel rockets reach seven times, perhsps even ten times
sonic velocity. However, when the earth, on its path around the sun,
encounters & plece of matter, this latter enters the earth's atmosphere
with a veloclty of 30 km/sec or sbout 100 times the speed of sound. A
shooting star or a meteor results. The alr 1s not capable of avoiding
i1t in time, slnce & small pressure disturbance 1s propagated only with
sonic veloclty which is far exceeded by the meteor flying et high super-
sonic speed. The meteor pushes the alr in front of it _in a cushion of
high density. Ahead of the meteor, density, tempersture, and pressure
Jump, shocklike, in & bow wave (fig. 1) to a multiple of their initial
values. We speak of a compression shock or, abbreviately, of a shock.

Here the importance of the ratio of the velocity W and the veloc-
ity of sound ¢ Dbecomes clear. This ratio is generally designated as
Mach number M, after the Viemnese physicist and philosopher Ernet Mach
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M= (1)

o=

E. Mach was one of the first to recognize the significance of this pro-
portionality factor for flow problems.

The pressure increase in the perpendicular part of the bow wave can
be easily determlined approximately. We visualize ocurselves placed on the
meteor as cbservers. The pressure increase in the bow wave originates by
the alr, flowing against the meteor wlth enormous power, being suddenly
brought to an almost complete stop. The momentum per unit volume is
pW (p = density). A momentum stream pW X W flows through a unit area
per unit time. The rate of loss of this momentum is equal to the statiec
pressure P immedistely behind the front of the bow wave

W2 = P (2)

It is true that static pressure exists also ahead of the bow wave, and &
small momentum stream is present also behind the bow wave since the air

must flow off around the body. However, both guantities named are much

smaller than the effects included in (2).

For ideal gases, there exist the following speed-of-sound formulas:
T = absolute temperature, Kk = cp/cv ratio of the speclific heats for

constant pressure Cp and constant volume cy, m = molar weight,
R = universal gas constant)

[ =?=T=K(%-CV)T . (3)

Ahead of the shock, the air is certainly to be regarded as an ideal gas.
Hence there follows from equation (2) with equations (1) and (3) the
following formula for the pressure rise in the bow wave for high Mach
number

A 2
W
% = ——pp = KM2 (ll')

Formule (4) shows clearly the importance of the Mach number; even though
it 1s valid only for higher supersonic speeds - the so-called hypersonic
speeds -~ 1t has the advantage of not containing an assumption on the gas
state after the compression. This is lmportant, for in the case of the
meteor flying at Mach number 100 there results (k i1s the value for alr
ahead of the bow wave: &« = 1l.4) a pressure increase of

% = 14,000

thus an extremely high value.
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An exect calculstion leads to the following formula: Since an equsl mass flows in ahéad of the Bho;k
front as f£lows off behind the shock front (see, for instance (ref. 1), p. 20), the continuity condition

_ W= oW (5)
appllies., The exact momentum equation reads
B+ W2 =p+ oW n {6)
From equations (5) and (6) follows T - ) -
2
g-%1-§+1=xua(-%)+1 S

Whereas the last term has no significance whetsoever for high speeds, the parenthesis in equation {7) in
the glven exam;ple leads, sccording to ta.ble 2, to e correction of ebout 10 perceat compared to equation (%).

In order to form now also an opinion sbout the temperature increase
occurring in the bow wave, we shall go back - as in all temperasture
problems - to the energy theorem. ILet us consider the unit mass of a
gas particle which passes through the front of the bow wave (fig. 2).

The kinetic energy W2/2, and also the internal energy of the unit

mass e are released; furthermore, the gas flowing out at the pres-
sure p performs work of the magnitude p/D by displacement of the
volume 1/p per unit mess. On the other side of the bow-wave front

corresponding energy increases have to be considered; hence there results _

the energy balance -
i) —e+®

This is valid under the assumption made here and always made later,

that no energy radlates toward the sides; however, at very high tem-
peratures, this is probably only conditionally true and will probably
require a correction. In equation (8), the kinetic energy behind the
bow wave $2/2 1is, in practice, quite insignificant. ~If the energy
consideration is set up, Ilnstead of for the state behind the bow-wave
front, for the state at the stagnation point, there even applies exactly
(with the subseript O for the state of rest W =0: e =eg, D = Po,

p=po)

PO _ L, p. W '
ot TetEr T _ (9)
For an ideal gas there epplies, furthermore, the equation of state,
3
D - RT
s=5 = (% - )T (10)

end it will be shown that, in what follows, the gases may very well be
regarded as "ideal."

NAGA reviewer's note: Although the first equality of equation (lO),
-§.= %%, is applicable in the general case of varying molecular weight, the

second equality, %% (qp =-C )T, 1s not. -
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Furthermore, if we assume, in order to arrive at numerical values,
that we are dealing with an ideal gas of constant specific heat, there
applies for the internal energy, aslde from an additive constant, e = cyT.

Hence it follows, together with eguation (10), that

2
_ W
cpTO = cpT + =

or, introducing the velocity of sound with equation (3) and the Mach num-
ber with equation (1)

To kK = 1.2 '
=] 4+ 2T =M 11
= > (11)

Hence, for air (k = 1.4) at a meteor Mach number M = 100, it follows
that the temperature ratio Tqo/T = 2,000; for an absolute temperature

of 225© as prevails, for instance, in the stratosphere, this would cor-
respond to a rest or stagnation-point temperature of Ty = h50,000°.

At such a temperature, however, the alr has certainly been dissociated
or ionized long before. The assumption of the eir as being a gas of
constant specific heat, which forms the basis of eguation (ll), has cer-
tainly been grossly vioclaeted. This is equally true for the state lmme-
diately behind the shock front where the air also has come almost to a
standstill and where, therefore, almost stagnation condlitions exist.

Wheress the momentum considerations with equastion (%) lead, there-
fore, to a quite serviceable estimate for the pressure increase in the
bow wave, a more exact knowledge of the gas state 1s necessary in order
to arrive at results for the temperature. Figure 3 shows the composi-
tion of the alr as & function of the temperature for normal density
according to quantum-theory calculations of Burkhardt (ref. 2).% According
to these calculations, the composition of the air of the normal state of
approximately 20 percent Oy and 80 percent N> 1is maintained up to

beyond T = 2,000° aebsolute. Aside from a slight formetion of NO, No

end Oo start dissociating to N and O at about 3,000°, and at 10,000°
the air 1s a monatomic mixture of nitrogen and oxygen. The mean molar
welght m has varied inversely as the number of molecules and has at
10,000°, therefore, only half the magnitude of the normal state. In

cases of heating beyond lO,OOOO, the gas is ionized. Due to the forma-
tion of electrons, the molar weight decreases further. Figure 4 shows

the internal energy of m = 29g air. This is, therefore, the internal
energy of a mole at low temperatures and, according to the kinetic gas
theory for molecules with flve degrees of freedom, thus for air of low
temperatures,

me = 5T
is valid.

*NACA reviewer's note: Since the calculations of Burkhardt are now
outmoded, figures 3 and 4 are only approximately correct.
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Since the molar weight decreases at higher temperatures, me 1is,
at higher temperatures, no longer the internal energy of a mole. Fig-
ure 4 shows that the internsl energy increases considerably more than
for the "ideal gas of constant molar weight." This is caused by the
large energies required to first split the molecules into atoms and then
to separate electrons from the atoms; such energles are_comparable to
those of intensive chemical reactions.

In the entire range considered, the alr is to be regarded as an
"ideal gas" 1n the sense that the equation of state (10) applies with
substitution of the particular molar welght m, which is a function of
the temperature and also of the density. From the standpoint of gas
kinetlcs, this means that the volume of the molecules is always small
compared to the volume of the space in between and that the forces of
mutual attraction are insignificent. The dependence of the internsal
energy on the density is only a result of the dependence of the decompo-
sition of the gas on the density. The potentlal energy arising from the
mutuel attraction of the molecules, in contrast does not play any role,
Just as in the case of the ideal gas. )

For calculating the change of state in the shock wéve, we shall use
a relationship between the thermodynamic state variables which is known
as "dynemic adiabatic." W and W can be eliminated from the three equa-
tions (5), (6), and (8) which are valid for all medis, and

~ 1/1 1 Al

€ e === - + 12
2(,; E)(P p) (12)
results. For the extreme states here treated, £ >> p and, according
to figure 4, likewise & >> e, whence we obtain the following equation,
of good approximation:

-1=28
b

oo

and, with use of the eqpatibn of state of ideal gsases (10) the approxima%ion

9] _ 28R _26mfA. | : '
Tl E Tm o= 3)

The difficulty lies in the fact that the state after the compresgion is

desired but that there the internal energy € 1is dependent on T and §
in & gomplicated manner. Therefore, we shall simply assume the state g
and T and calculate the Mach number of the meteor as well as its flight
altitude, thus the air density p in which it 1s flying.
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The second column of table 2 gives the assumed temperature @
multiplied by the absolute ges constant. We put there R = 2 cal/degree,
not 2 cal/g X degree, because the molar welght has been Introduced with
the dimension g (gram) in figure 4. Columns 3 and 4 follow from fig-
ures 4 and 3, column 5 from formula (13). It is remarkable here that the
density in the bow wave increases only by a factor of 6 to 13. This is
of course not surprising since 1t is known that the density in the com-~
pression shock of an ideal gas of constant specific heat of k = 1l.h, in
the limiting case of high Mach number, increases only to 6 times the
initial value. The dissociation and ionization of the gas thus causes an
increased compression and a decreased rise in temperature - as will be
shown later - and has no important influence on the pressure rise.

As a result of the slight compression of the gas, an ideal gas may
still be regarded as "ideal" even after the compression shock - however,
with varieble molar weight m, dependent on the state.

Since P was assumed ag the normel density, column 5 also determines
the density shead of the bow wave and thus the flight altitude of the
body. It is represented with the assumption of the so-called "standard
atmosphere" (ref. 3). In every case, we are dealing with flight altitudes
in the stratosphere, thus with altitudes which are of interest not only
for meteors but also for missiles flying at very high speeds. There a
temperature of approximately T = 223© absolute prevails. Thereby the
temperature ratio also 1s fixed. With the equation of state of ideal
gases (10) shead of and behind the front of the bow wave there then fol-
lows the pressure ratio

E_

p

=D
O |0

g;é (14)

and with equation (7) (or with the less accurate equation (4)) the Mach
number. Because of lack of the m-values for T = 30,000°, the calculstion
in table 2 is limited to Mach numbers M € 4. On the other hend, a
meteor in the upper stratosphere is strongly decelerated so that table 2
is of interest for this astronomical phenomenon, too. We shall encounter
the Mach-number range between 15 and 30 below also in the problem of
satellites. For this reason, the results are of technical lnterest as
well. Of course, they are of importance only for the pressure region
behind the bow wave. Considerably weaker effects would occur on pro-
Jectiles with conlcal points.

As mentioned before, the pressure rise depends in practice only on
the Mach number. From M = 30 (1line before last in table 2) there fol-
lows with equation (4) P/p = 1,260. In equation (1) the left side is
thus fixed with M. The compression is approximately twice as high as
for an ideal gas with k = 1.40 and the molar weight only half that in
the initial state. Hence the temperature rise in this case 1s only about
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1/4 of that calculated with equation (1l)}; thus, instead of

f/T ~ To/T = 180, only 45. For an approach-flow temperature of T = 223°,
this means, instead of a temperature of T = 40,0009, only 10,000° behind .
the bow wave - a value vwhich, of course, is still far above the tempera-
ture of the surface of the sun. The air is practically dissociated com-

pletely in this case.

It is true that we make here the assumption that the time intervals during which the ges stays in the
stete considered are sufficient for adjustment of the thermodynemic equilibrium, the dissociation and icniza-
tion equilibrium on which figures 3 and 4 are based. Experiments with the shock tube treated in section & ’
have shown that relaxation phencmens do eppear. The final state is therefore sttained » sometimes, not imme.
diately behind the shock front but only after passing through a transitionsl zonme. Tt must be taken into con-
sideration, though, that a delsy in the disintegration of .the molaculés causés a suptrelevation of the tem-
perature. The tendency of the ges toward dissociation and lonization is therefore grestly heightened in this
transitional state which makes the gas there tend toward thermodynamic equilibrium the more rapidly.

3. DRAG PROBLEM

The drag of bodies flying at such high speeds 1s governed excluslvely
by the extrasordinerily high pressures in the neighborhood of the stagna-
tion point. These pressures amount to g multiple of the approach-flow
pressure. In the face of these facts, even a complete vacuum behind the
meximum thickness of the body cannot produce a noticesble suction. Fric-
tion forces can exert a certain amount of influence only in the case of
very slender bodies which will not be considered here.

Since the pressure at the stagnation point lies sbove the pressure
behind the perpendicular part of the bow wave (the pressure at the maximum
body thickness, however, 1s considerably smaller than $) the drag D will
be equal to the cross-sectional srea F times a mean pressure p = CP
where C 1s of the order of magnitude of unity. BHence, there follows with

equation (2)

D = F§ = CFP = CFpW2 = (1)

Thus the drag coefficlent cp referred to the "frontal area" F is

Cn = D = 2C (16)
D Fpw2/2 .

This result is noteworthy. It indicates that, in the range of very
high Mach numbers, the drag coefficlent becomes independent of M. . The
author generally proved this result (ref. 4) for ideal gases of constant-
specific heet where it was shown that, for blunt bodies, the independence
of M appears for M2 >> 1. The tests (ref. 5) show indeed that the
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coefficients for a sphere and for a cylinder in an axial epproach flow,
as early as for M = 3, epproach an asymptotic final velue which lles at

= 0.9 for the sphere and et ecp = 1.65 for the cylinder (fig. 5).
The corresponding factors =$/8 are C =0.48 and C = 0.82. Anocther
conclusion is surely permissible here. ©Since the pressure increase in the
perpendicular part of the shock depends only on the Mach number M and is
only insignificantly influenced by the dlssociation of the gas, the effect
of dissociation and ionizatlon on the drag coefficlent of the gas certainly
is also slight. This must apply all the more, the slenderer the body,
becausge then the gas also devietes less from the state of constant specific
heat. The Influence of k on cp, too, can only be slight, according to

equation (16).

At thils point we want to discuss briefly the problem of drag of a
meteor where the pure kinetlic energy is compared, on the one hand, to the
work done sgaeinst drag in penetrating the stmosphere, and on the other
hand, to the heat of fusion of iron, the chief constituent of most meteors.
Referred to the unit mass, the kinetic energy is simply W2/2 (table 3).
With equation (16), the resistance work in a distance L, at the den-
sity p, for a sphere of the radius r (a meteor is to be regarded,
approximately, as such & sphere), is

L = cprnpl W; = 0.95r2xpL %

The resistance work for a unit mass then is, with pp as the density of
iron

DL _ o lpeL¥2
(4/3)r3n0g rPg 2

The helght of the "constant-density atmosphere" ( = 1.293 x 10~3 g/cm5 is
8 kxm. Since the product pL is not dependent on the assumption of p

(the weight loeding per unit area of the ground 1s the same in any case) we
may assume the estimate with & mean constent density to be quite usable.
With pgp = T. 8 g/cm> there then follows the second value of table 3.

The radius of the meteor T, expressed in cm, is to be substituted into
the formula.

Third in the table, finally, we find the heat of fuslion of iron. As
a quentity having the dimension cal/g, it may Jjust as well be given in the
form of a kinetic energy per unit mass. Here and later on, heats of trans-

formation are thus expressed mostly in the dimensions [;/2(km/sec)%]
that is, they. correspond to the kinetic energy per unit mass of a body
when its velocity is counted in km/sec. Thus
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5
0.4186 x los[(cm/sec)e]
0.4186 x 1072 [(km/sec)Z]
0.091502[-%-(lqn/sec)2]

[ca1/e]

Y

(17)

P

1 cal/g corresponds, therefore, to the kinetic energy per unilt mess of
a body flying with a velocity of 0.09150 km/sec. This at first unusual
manner of expression will prove advantageous for energy considerations
in the field of rockets. -

For a meteor of a radius of r = 9% ecm or a diameter of 2m, the
kinetic energy and the resistance work are about the same, that is, the
boundary where the meteor 1ls brought to & complete stop by the earth's
atmosphere lies at this diemeter. It is true that the pull of gravity
has not been taken into consideration here, but in the case of a meteor
it is of 1little importance. The kinetic energy of a meteor flylng in at
30 km/sec is approximately 2,000 times (302/0.41 = 2;200) its heat of
fusion. A spherical body measuring meny meters will thus penetrate the
earth's atmosphere but will not only melt but also evaporate at the
impact. A small spherical body generates on its way through the atmos-
phere - due to 1its resistance work - so much heat that even a small pert
of this heat 1s sufficient to melt it. It is therefore not surprising
that at least the point of maximum temperature rise - the head of the
meteor - must nelt.

The conslderations on resistance work are associated especislly with
conditions for meteors; thus they do not permit immediaste conclusions as
to the processes in the case of projectiles or rockets. For these latter,
the drag values per unit mass are sometimes considerably smaller.

4, SHOCK TUBES

The considerations following next will be devoted to the problem of
producing extreme states in the laboratory. For the various cusiomary
types of supersonic wind tunnels, one encounters many difficulties in the
attempt to achieve hypersonic velocities. The problem of the energy
required 18 not so difficult. Considerable pressure gradlents alsoc can
be achieved; however, the appearance of very high temperatures poses
technical problems which are very hard to solve. In Trecent years, &
test arrangement which, in English, is called "shock tube" has attalned
importance. We deal here with the production of a cne-dimensional
explosion in the lsboratory so that the instrument should perhaps best
be called an "explosion tube" in Germsn.
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First, let us consider the unsteady propagation of a two-dimensional
sound wave (fig. 6). If we deal not with a wave-shaped but with a step-
shaped disturbance, the sound wave produces a small disturbance of the
thermodynamic state and of the velocity of sound c¢ and causes a change
in the flow velocity W. In the reference system of the sound wave, the
connection between temperature varlation and varlation of kinetic energy
was previously indicated in the derivation of equation (11). This con-
nection applies for any stationsry disturbances, compressions or expansions

*
W daWw = p 4aT
or, with introduction of the velocity of sound with equation (3)

WaW ==—2— ¢ dc (18)
K - 1

However, we now deal wlth the disturbance in & sound wave. In order to
keep the latter stationmary in figure 6, the flow velocity must be chosen
equal to the veloeity of sound. Hence, for the change of state in a
sound wave there applies in the coefficients of equation (18): W = c.
The change of state in a sound wave of en 1deal gas of constant specific
heat is given exactly by

AW == —2— de (19)
K - 1

Thus, the velocity veries in a sound wave in the case of air (k = 1.40)
five times as much as the velocity of sound. For eguation (19) it no
longer matters whether the sound wave is considered in a coordinste
system fixed to the wave step or in en arbitrarily moved coordinate sys-
tem, whether the wave step travels on or remalns stationary; a veloclty
difference dW 1s independent of the selection of the coordinate system.
A wave crest, for instance like the one sketched in figure T, with a
state of rest (W = 0, ¢ = co) on the left side, may be regarded as a

superposition of sound waves, each of which travels in the state created
by the preceding wave. In figure 7, for instance, the first wave,
situated farthest to the left, rums with the velocity of sound of the
state of rest cp. The decrease of the velocity of sound in the first

"partial wave" - which is only an expression of the drop in pressure and
density - leads, according to equation (19), to the gas beginning to
flow slightly to the right. On this gas flowing to the right, the next
sound-wave step now moves to the left, etc. Thereby we also obtain
immediately a picture of the deformetion with time of the sound wave.
The absolute veloclty of a sound wave moving to the left is W - c. For

*HACA reviever's note: This equation should read W dW = -Cp 4aT.
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s state of rest, W = 0, it runs with the véiocity -c; for W =2¢c, 1t
remains stationary. By integration of equation (19), the flow velocity
of the gas is readily expressed by c. Taking c = cg for W = 0 there

epplies : _ : - B -

- f l(co -9 | _(20)_

Whereas thus the veloclty of sound in the wave of finite amplitude
decreases, the flow velocity increeses. With equation (20), there
applies for the absolute veloclty of the sound wave -

We~c=

1
K_.l(czo-c)-c=-co+:i-l(c:0-c) (21)

For very strong expansion, that 1is, for very low temperature and
a very small value of c¢, the part of the_wave situated on the right is
carried off to the right by the gas flow; that 1s, the wave flattens
with time.

In the consideration of an "explosion" in a tube, this appears self-
evident. Iet us start from an iInitlal state in which on the left side of
& membrane set into a tube (fig. 8) high pressure exists while the other
side is pumped out. Shortly after the membrane 1s burst, a pressure dis-
tribution similar to the one sketched and a corresponding sonic-velocity
distribution exist. The further variation with time is that which was
discussed with the ald of figure 7. Whereas the pressure on the left
slde 1s reduced by the progressing expansion weve, the high-pressure gas
flows, explosively, into the low-pressure side. The attainable maximum
velocity corresponds to a complete expansion p -0, p -0, T -0,
¢ - 0; therefore, according to equation (20) '

W =2 (22)

It is true that a pressure gradient sufficlent for atteining this
meximum value is hard to achleve so that we must 1limit curselves to con-
siderably emaller values. The gas expands isentropically (adiabatically).
For this there spplies, at «k = const

s - (X
%0 - \To

or for the velocity to be attained for a pressure ratio p/po with
equation (20)

K=l

1/2 ] (li>2n (25)“

Po

i
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K-1

R R o B

According to equetion (24), a high velocity of sound at rest is no
less important for a high flow velocity W +then a large pressure drop.
This rest velocity cannot be too greatly increased by heating since a
doubling of ¢ requlres, according to equation (3), a guadrupling of
the absolute temperature. However, precisely this equation (3) shows
that geses of smeller molar welght have e considerably higher c¢. For

equal temperature, hydrogen (Ho: x = 1.40, m = 2) has J29 2 = 3,8 times
2 )

the sonic velocity of air (air: k = 1.40, m = 29); this phenomenon is
explained, from the standpoint of gas kinetics, by the considerably higher
flight velocity of the molecules of smaller mass.

If the high-pressure side of the shock tube is filled with Hpy and

the low-pressure side with very highly rarefied air, the hydrogen rushes,
after bursting of the membrane, with grest speed 1nto the low-pressure
side, displacing the air which is compressed in & shock. Due to the
large pressure differences, the process can be sketched only with a dis-
torted pressure scale in figure 9. The state of rest of the air is
designated by the subscript 1 in order to distinguish 1t from the
state of rest of the hydrogen. At the surface of contact of the two
gases, pressure and velocity must be ldentical. For H,, the comnection
between W and p ie glven by equation (24k). For a moving shock, how-
ever, it still has to be derived. So as not to lose any clarity, the
consideration will be limited to the case of strong shocks treated here.
For the stationsry flow there applies equation (2), with the flow veloc-
1ty behind the shock W being rather small, compared tc W.

The shock front need only be considered from a coordinate system
fixed to the approaching ges in order to arrive at the case of a shock
moving into a gas at rest, as in figure 9. The shock front then has the
velocity W, and - in the case of a strong shock - the gas behind the
shock front also has approximately the seme velocity. Since the values
shead of the shock are written with the subscript 1, and those behind
the shock without subscript, there applies therefore for the moving
strong shock

2 P 1 P11 D 21 P
WE = =— = Ky == oo = —_— 2
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For judging the merit of equation (25), we shell briefly derive the exact formula. It ia easy to derive,
from the exact equations (5) end (6), the equation (26) for stationary flow :

e

N T b/%ZP o _ (as)_
w-ﬁ-‘/(ﬁ-p)(l-iﬁ-) - _ )

The velocity difference W - H is the same for all reference systems moved perpendicularly to the shock -
front, end is hence equal to the velocity W at the contact surface in figure 8. With the designations used

there, we have therefore exmctly:
2a(p-p)ft-1). - 2
W= (p Pl)(ﬂl p) p%('l - _DJ')< - F) ) (28_)

Hence follows

Equations (24) and (25) may be interpreted as two relationships
for the unknown state at the contact surface, W and__p/pl. W can be

easily eliminated, and we obtain - =
-1 K-l

=n_1\/—l‘ Pl 2" (%)2“ (29)

which is an equation for the required soric-velocity ratio of low-pressure
and high-pressure gas in the initial state when the corresponding pressure
ratio Pl/PO and the pressure ratlo in the shock p/pl are glven. The

two ratios of the specific heats in the initial state, ky end k, also

enter into equation (29). It i1s assumed that the high-pressure gas expands
like an ideal gas of constant specific heat; the compression shock, how-
ever, may be connected with dissociation, lonization, or merely with varia-
tlions of the specific heats if it is only sufficiently strong.

Since the pressure sharply decreases even in the high-pressure gaé?
& pressure ratio PO/Pl ag large as possible 1s necessary to guarantee

gufficient pressure rise in the shock. A pressure of pg = 300 atm on
the high-pressure side and a vacuum of Py = 0.03 atm on the low-pressure

side are not hard to achleve in the laboratory for small tube dimensions.
If we provide, furthermore, & pressure ratlc in the shock of p/p; = 280,

which according to table 2 corresponds to a Mach number M = 14.8, and
assume ky =K = 1.40, we can calculate from equation (29)

ey 5yLl.k0 280 \M/7| = 0.12 -3
% e 1- (T"O‘o,o o)
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If we use H, as the propellant for the compression of air, the
required temperature ratio then is, with equation (3)

If, therefore, the alr is maintained at room temperature T; = 288°, a
heating of the hydrogen to .Tg = 980° (= 600° C) is necessary, to pro-

duce the conditions of table 2 at M = 14.8. These are not particularly
large demands on test technique.

The calculation contains three further inaccuracles which could
slightly modify the result. A heating of hydrogen leads to =z small
decrease of k, which could become noticeable in equation (29) because
¥k - 1 enters. Purthermore, according to teble 2, the air 1s compressed
from 0.03 times to 0.30 times normal density. This leads to a somewhat
higher dissociation and a somewhat lower tempersture but not to any
essential changes. Finally, the absolute temperature ahead of the shock
is assumed to be 288°, thus 30 percent higher than in table 2, which
results in a higher temperature behind the shock and correspondingly
higher dissociation. This effect probably overbalances those named
first.

Therefore we produce, ln the present case, a temperature of more
than 5,000o abs in the shock tube, thus aspproximately the temperature
of the surface of the sun. In contrast, the temperature in the adja-
cent Ho 1is very low, namely :

k-1 1/7

THy _/p\ " _ (_280 _ - 350°
no- (%) - (woem) O o Tmpm e

This reproduces a quite general property of exploslons. In chemical
combustion, as occurs for instance in powder, the temperature does not
rise beyond 2,500° to 3,000°, since then, as in the case of hydrogen

and oxygen, the dissociation becomes so strong that it consumes all
further availsble energy. The strong pressure drop in the explosion
leads to a considersble cooling of the powder gas; the disscclation need
by no means find the time to recombine. The air, in contrast, shocklike
compressed by the explosion, is extraordinarily heated up and represents,
further along, the hot part of the process.

The possibilities for producing high temperatures in the shock tube
are not exhausted with what we have described above. When the shock,
in figure 9, finally arrives at the right end of the tube, the thermo-
dynamic state is further pushed up by reflection. A narrowing of the
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tube toward the right likewise leads to energy concentration and to
increases of temperature and pressure. Regarding these facts, or the
use of other gases,:we refer for instance to the reports of Kantrowitz

(ref. 6).

The achievement of such extreme states with relatively small effort
must of course be paid for with a disadvantage: the transient nature of
the phenomenon. The phenomenon which is of lnterest extends only from
the front of the shock to the surface of contact wlth the high-pressure
gas, thus only over a fraction of the entire shock tube, and it races by
with a speed of (eq. (25))

J_— 340 m/sec = 4;800 m/sec

If we succeed, therefore, in extending the observed state to 0.50 m in
e shock tube of 5 m length, it lasts at one point 1/10,000 sec. This
is sufficient for photographic recording. Subjective observation is of
course impossible. E -

5. RAMJET POWER PIANT

In the face of the unusual condltlons encountered at high speeds,
there comes to mind the questlion as to what speeds are altogether attaln-
able with alrplanes or other flying bodies. We choose ag the starting
point the thrust equation for a free-flying body. As the loss of momen-
tum leads, on a surface, to a pressure rise, to a force.in the flow
direction and, in the case of & body, in the last analysis to a drag
(shown for instance in eq. (15)), so the production of momentum leads to
a thrust S. In what follows, we shall consider the simplest and most
important case in practice: that the production of momentum occurs in
a region of constant pressure (fig. 10). It is unimportant whether pres-
sure differences appear on the thrust body itself. Let the pressure be.
constant only in a certain region characterized by the rectangular bound-
ary of the body. Let us consider there the entering Jjet with the cross
section f,; the velocity W, and the quantity G, flowing through per
unit time, and the exhsust Jet with the corresponding quantities without
subscript.

The .loss of momentum in a certain direction, either by stoppilng or
by rectangular deflection, produces a force K = pWf X W = GW; the pro-
ductlon of momentum generates the corresponding thrust.  Thus there
results for the total thrust

= QW - G W, - (30)

w
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In many cases a definite inflowing mess is used for increasing the veloc-
ity; this applies exactly for all propellers and with very good spproxima-
tion for all jet power plants. Then G 1is equal to the quantity G,
coning from the infinite approach-flow region and '

8 = GeolW = We) (31)
1s valid.

In the case of the rocket, however, which will be treated in the
next section, the momentum is imparted to a mass which is carried along,
G, = 0, and

S = GW (32)
is valid.

The ramjet power plant operates as follows: A part G of the
approaching air is given en Increased pressure by belng stopped. In
this state of rest the air is heated whereby its density greatly decreases.
The heated air finally is expanded again to the 1nitiel pressure. The
velocity W atteined by the air in the pressure gradient is larger than
the veloclty W, lost by the air during the pressure rise of the stop-
ping because the air density during the expansion is smaller. For the
lighter the alr, the greater is its acceleration in a given pressure
gradient.

This type of propulsion was discovered by the Frenchmen Lorin at a
time when flying was stlll done at low subsonic speeds. For supersonic
velocities, this type of propulsion was rediscovered by Trommsdorff in
the early years of the last war. As will be shown directly, this type
of propulsion is of eminent importance precisely for supersonic speeds.
In order to understand this, one has only to start from the principle
that the efficiency Ne of an ideal thermodynamic engine is given,

according to Carnot, by the ratio of temperature rise between heat input

‘and heat exhaust to the temperature of the heat input. The heat input

takes place at the stagnation temperature Tg. Here as well as for the

gasoline engine, the cooling of the working gas 1s replaced by an exchange
of the hot alr blown off in favor of newly supplied cold fresh air. With
the equation (11), applied to the approach-flow state T, M., there

follows thus for Carnot's efficiency

T - T
0 ©a 2 1
1 =———=l<l+-—-———- (35)
c TO K-lez)
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The approximetion of an ideal gas of constant specific heat, assumed
for equation (1l1), is sufficiently satisfied for the following considera-
tions. Table 4 gives a few results. i

Wherees, therefore, the efficlency of the ideal ramjet power plant
is still low for flights at the speed of sound, it equals, for M, = 3,
e diesel engine working ideally with a pressure of 37 atm! With inereasing
flight Mach number M, the efficiency improves still further. Thereby
this type of propulsion proves to be the ideal engine for steady super-
sonlc flight. Of course, some losses are to be expected for this type of
propulsion, too; among them, the kinetic energy being lost with the thrust
Jet is by far the most important. Thus only part of the performance given
by Carnot's efficiency 1s used "profitably." To an observer standing on
the ground and considering the body flying at We, the work performed per
unit time against the drag forces or ageinst gravity is

= QW (W = Weo) " (3k4)

The exhaust jet, however, discharges an smount of kinetlc energy per unit
time given by

. _
g {0 = Weo) ™ ~ ) (35)

The dlscharged heat energy need no longer be taken into consideration.
This energy has already been represented by Carnot's efficlency. The

ratio of the desired mechanical output and the sum of the two actually
achleved mechanical outputs ylelds the Jet efficiency

Weo W = Woo) Voo (36)
oW, (W - Wm)+(W-W) T W W

gt =

The product of the two efficiencles ngy and Ne theﬂngives rather

accurately the efficiency which has to be taken into account in practice.
An example will clarify the possibilities.

With assumption of lsentropic (adiabatié) expansion it is easy to
derive from equation (11) the generalized Bernoulll equation

k=1
W2 = 2cPTO[l - TT—O] = 2cPTo[:l_- (r'%) n] (37)

which is similar to equation (24), yet essentially different from it.
At & certain pressure ratio p/po, W 1is proportional to JTO whlch is

1y
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a square-root relstionship between W, ¢, and T appearing in different
forms. If in the case M, = 3 the stagnation temperature is quadrupled
by heating, which leads to a temperature of 2,536° abs, the exhaust veloc-
ity is doubled: W = 2W,. We then arrive at efficiencies of

Mgt = 2/3 1 =1

gy = 0.43

s

thus at very promising values. Of course, the jet efficiency could be
improved by less heating. However, the thermodynamic efficiency alone
is not the governing factor for the designer. Above all, a certain
thrust S 1is necessary.

If the problem consists, for instance, in flying at constant speed,
in steady flight, for a long distance, say across the Atlantic Ocean,
the thrust S i1s equal to the drag D or with equations (31) and (16)

Goo(w - W) = f4:>o-01:>o"’loo("1 - W) = cI)choWzm/2

Thereby the ratio of the cross-sectional area of the oncoming Jjet £
and the frontel area of the body ¥ is

%=—._ - (38)

The drag coefflcient cp of a flying vehicle lles far below that
of blunt bodies (fig. 5). If it is assumed to be ep = 0.30 (referred

to the frontal asrea, not, as in the case of alrplanes, to the wing area
or the like), 15 percent of the frontal area is required for the oncoming
Jjet at W = 2W,; this appears reasonable.

It is true that a reduction of the difference W - W, would lead
to an increase of 1gt; but at the same time it would Increase the Jet

area f, required according to equation (38), which is undesirable.
The designer therefore demands & certain "thrust concentration" and fore-
goes an excesslive increase of the'jet efficlency.

It 18 one of the small inaccuracies of the present representation that we elweys speak of heeting but
thet, in practice, this heating takes place by combustion of & hydrocerbon. An input of mass occurs which is,
however, rather insignificant. For instance, the combustion of gasoline and benzol in air under constant
pressure in the mass ratic 1:100 yields e temperature riee of approximately 40o®. As for the rest, & part of
the smaller neglected effects mcts favorably.
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With the quadrupling of the stagnation temperaturé at M, = 3 the

boundary is reached at which the dissoclation of the air sets in. There
would not be any objection ageinst the storing of energy in the form of
dissociation 1f this energy would become free ageln durlng the cooling
off of the jet in the expansion. This would even have the advantage that
the combustion-chember temperature would not rise sbove a certain limit.
The control of high combustlon-chamber temperatures represents, anyway,
one of the serious technical problems. However, the time avallable
during the expansion is too short for recombination of the dissociation
and adjustment to the cooler thermodynamlc equilibrium state since a
stronger cooling occurs only at very high speeds. Thereby a considerable
part of the energy going into dissociatlon 1s lost. -
The temperature up to which heating may be continued in the combus-
tion chamber is thus limited at least by the onset of dissoclation - :
unless the strength of the combustion-chamber walls (essentially a cooling
problem) imposes lower limits. This means a barrier for the heat supply
which restricts epplication of the ramjet power plant by a limiting Mach
number. Let us assume the temperature of 2,5360 abs ~ an enormous heat -
to be the upper temperature limit in the combustion chamber. Then there

results for M_ =5 an exhaust velocity of W =V2,536/1,338 W, = 1.38W,
compared to W =2W, for M, = 3. This means & considerable lncrease of
the area ratio fw/F, even though a small reduction of _cp with M, may
be assumed. ' -7 . -

However, temperature problems do not occur merely in the combustion
chember but on the entire body of the flying vehicle. It is shown that
the stagnation temperatures given by equation (11) and celculated in
table 4 are attained not only by ordinary storing but also - almost - by
the stopping of the alr due to friction at the surface of the flying body.
Even though these temperatures lie far below the heating temperstures in
the combustion chamber, the related problems are not any smaller since
enormous difficulties are encountered in the cooling of larger parts of
e flying body. If the vehicle is manned, a very radical cooling of the
cockpit is needed already for M = 3. The eiectronip components of
remotely controlled bodies also are very sensitlve to temperature; they
must be cooled or strongly heat-insulaeted. The simplest- solution depends
essentially on the length of the flying time. In the case of wing con~
structions, the strength properties of the metals must be exploited to
the utmost. The metals greatly vary in strength with the temperature.
Aluminum melts at 660° C. Due to its higher melting point of 1,530° C,
sof't iron 1s harder than steel at high temperatures. In finer construc~
tione, however, not only the general strength must be consldered. The
heat transfer to the wing and the heat conduction in the wing may lead
to a nonuniform temperature distribution and to e warping of the wing.
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Still another difficulbty must be pointed out which lies in the
appearance of high centrifugal scceleration. If the latter 1s designated
by g end the radius of curvature of the path by R, the followlng rela-
tionship, which is known from mechanics, applies:

&R = W2 (39)

For a speed of W = 1,000 m/sec, thus approximately M = 3, and a path

radius of R = 100 km = 107 m, one arrives at a centrifugsl acceleration

of 10 m/sece, thus approximately at the acceleration of gravity. If g
is regarded as the maximum admissible accelerstion for the human body,
only path radii larger than 25 km are admissible for M = 3, The pilot
must turn in a circle of this radius if he misses his target. For the
wings and control components of a pursult rocket, the intended path radii
thus are sometimes much more important than the production of 1ift for
overcoming gravity.

All this shows that the main difficulty in supersonlc £light does
by no means lie in the production of the required forward thrust, but
in the control of the temperatures and centrifugal forces.

6. ROCKET

In a well-known and very good book for young readers, wrltten in
1931, on various philosophical, mathematical, and technical problems
there is the sentence: "It can easily be calculated that the upper
limit to which present fuels can take us, is about 4OO km above the sur-
face of the earth . . ." The corresponding calculation is not given;
but, doubtlessly, it_is based on the relationship that the energy required
for 1lifting a mess M (B for the mass in contrast to M for the Mach
pumber) to the height H can at most be equal to the reaction energy or
combustion energy which this mass mey contain. At the anticipated height
of 400 km - compared to the size of the earth's radius of 6,380 km - the
gravitational acceleration g mey be regarded as constant. With gq as
the reactlon energy per unlt mass there results, irn this manner, the
energy equation: force Mg times distance H equals mass times reac-
tion heat g. The mass may be cancelled from this equation with the
result

gl =q (+0)

A good powder has about g = 1,000 cal/g or, according to equation (17),'
q = 4.186 (km/sec)2. With g = 10 m/sec2 = 10-2 km/sec2, equation (L0)
leads to the helght of rise H = 418.6 km.
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As to the reactlon energy, one could of course ralse the objection
that much greater heights could be attained with liquid-fuel rockets (see
for instance the oxygen-methane reaction in table 6) and that, more
recently, atomic energies open up completely different possibilities.
However, we shall not enter into details sbout this since the expression
(40) itself is based on a wrong assumption: that the reaction energy of
e mass 1s consumed in lifting or else for accelerating one and the same
mass. The processes have been sufficlently discussed in the preceding

section to understand them correctly in what follows.

The thrust of a rocket 1s given by equation (32); W is the "exhaust
velocity," the velocity in the rocket Jjet relative to the rocket body.
After all the propellant has been ejected, the energy balance is such
that the thermal energy of the propellant has been used to impart to the
rocket body & certaln kinetic or potential energy. Undesirably, mechani-
cal energy (kinetic or potential) has, in addition, been glven to the pro-
pellant and possibly to masses released or left behind in flight. The
distribution of the mechanical energy between the massses involved is
rether nonuniform and may, theoretically, be completely in favor of the
rocket.

Let us assume, for example, that the acceleration of the rocket
occurs horizontally - or also vertically but at sufficiently slight dif-
ferences in helght - so that the varlatlions of the potential energy of
the messes under consideration do not play any part. Iét us assume,
furthermore, that the exhaust velocity W of the propellant Jet can be
regulated and is, in each case, adjusted so that 1t is equal to the flight
velocity of the rocket; then, the ejected propellant mass is at rest,
relative to the observer. In this ideal case the entire thermal energy
of the propellant mass ET is used for imparting a kinetic energy to the

rocket end mass Mg.

It is true that the "thermal energy" there is not ldentical with the
"reaction energy" at a particular temperature, as is usually indicated
in tables (cf. table 6). The variations in the internal energy of the
propellant also play & certain role. For the considerations of this sec-
tion, however, which have only the purpose of orientation, these varia-
tions are unimportant. But 1f compressed asir is used as the "rocket
propellant,” the "thermal energy" consists excluslvely in variations of
"internal energy." If thus the entire thermal energy per unit mass of _
the propellant which has been released is denoted by q and V 1is the
flight velocity of the rocket, there applies in the ideal case

‘2— MR = qM‘I' . | (1"1)
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By selecting a sufficiently small mass ratio ﬁR/MT we can there-

fore impart to the rocket an energy far exceeding equation (40). Evidently
equation (hl) defines an unattalnable ideal case whose value consists,
above all, in establishing a limit for the most favorable conditions.

Strictly spesking, the exhaust velocity W must not be set equal to the flight velocity, at least at
the beginning. At the start & W, even though a minimm W, must exist so that & starting thrust may be
present, Thus we deal in this respect, as well, with & theoreticelly constructed limiting cese.

In spite of all the defects inherent in the ideal case investigated,
it teaches clearly a few fundamental principles. Extreme end velocities
require large masses of propellant. Empty fuel containers will have to
be dropped, wherever possible, in order not to accelerate unnecessary
dead weight. The most favorable exhaust velocity W lies below the end
velocity of the rocket. Thus the rocket jet has, at the start, absolute
velocities which are directed against the flight direction. During the
flight, the absolute velocities of the Jjet decrease more and more, van-
ish, and are directed in the direction of flight &t the end of the com-
bustion time. In this manner a minimum of mechanical energy may be lost
to the propellant.

The rocket combustion chamber of constant exhaust velocity W repre-
sents the case which is by far the most important in practice. We shall
compare this frequently treated case (ref. 7) with the ideal case. Iet
U and M %be the velocity and mass of the rocket during the combustion.
The thrust then imparts to the mass an acceleration dU/dt and there
epplies according to Newton

au _
M o= = GW (42)

an equation which is in terms of velocities. The propellant mass ejected
per unit time equals the decrease of the rocket mass

.4
o (43)

Eliminating dt from equations (42) and (43), we can relate the
varistion dM directly to the variation dU

a ag

WO R

For W = Constant, this cén be easlily integrated

= 1n M + Constant

=l
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and since for the beginning and the end of the_acceleration

U=0: =g+, ' B
it = fip _ |

)

]
3

is valid, there follows finally

% = 1ln @B:i_@i or @B_i_@l = ev/W (4#)
Mg Mg

The frection (ﬁR + ﬂh;/ﬁR, that is, the starting mass of the rocket

divided by its final mass, is denoted as mass ratio. According to equa-
tion (44), this ratio must assume the value e = 2.718 (ln e = 1) if

the rocket is to attain the exhasust velocity W of the propellant,
unimpeded by air drag or gravity. For determination of the velocity with

2
have to be related to the kinetic energy of rocket and pfopellant in the
final stage. Thus we must sum over the kinetic energy of the various
parts of the jet. Without demonstrating here this comparatively elemen-
tery calculation, we shall only report that the highest value of the thus
defined Jet efficiency Mgt results for a mass ratio of 5. We obtain

the smallest jet losses, the kinetic energy of the rocket (!-)ﬁRVE would

approximately - .. T
(Mg + fip)/Mp = 5 V/W = 1.6 ngt = 0.65 (i)
(Fig + fig)/fip = .72 V/W=1.0  ng = 0.58

In the second line, the values for V =W are given. Thus the _
ideel case, given by equation (41), is not so very extraordinary, after
all. With the usual rocket of constant exhaust velocity W and ejec-
tion mass G, more than 50 percent of the ideal case can be attained.

The most serlous difficulty lies rather in the achievement of the required
maess ratlo. The constructlon of a rocket, the propellant mass of which
amounts to 63 percent (V/W = 1.0) or even 80 percent (V/W = 1.6), repre-
sents an enormous design problem. For the V2, the approximate value

(MR + ﬁq&/ﬂé 3.5 1s given in reference 8. Only the smallest part of

the end masg’ MR of the rocket, however, consists of the useful load

to be transported; the largest part is occupled by the mass of the fuel. .
tanks, of the rocket-combustlon chamber, and of the various necessary
accessories. -
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For Jjudging the difficulties of building interplanetary rockets,
we shall first calculate the necessary sterting velocltles. We assume
that the body is directly shot away from the earth's surface into a
vacuum. Actually, the rocket is driven comparatively slowly through
the lower atmosphere, the troposphere, in order to keep the losses by
air drag low. Outside the troposphere, the rocket is then rapldly accel-
erated to the final velocity V. However, since not only the troposphere,
wlth approximately 10 km height as & reglon of possible friction losses,
but also the height required to attain V 1is small compared to the dis-
tances considered, we may calculate as 1f the body were entering the
vacuum with V directly from the earth's surface.

The gravitational acceleration g decreases quadratically with the
distance R from the center of the earth. On the surface of the earth,
1t is R = Ry = 6,380 km, gg = 9.81 m/sec2. Thus

g = so@—q)e (46)

is valid. If we now assume that a body rotates as a satellite, at the
distance R from the center of the earth, with the velocity Vg, the

relationship (39) between path radius, centrifugal acceleration, and
velocity is valid, so that

2
VeZ = & R—g— (47)

Table 5 shows numerical values and the Mach numbers referred to a
sonic velocity of c¢ = 330 m/sec. At such speeds a body does, there-
fore, not need wings. The path curvature produces the required "1ift."

If a body is to fly at the distance R with Vg, ite starting

veloclty V must be so large that the decrease of the kinetic energy is
equal to the work performed against the gravitaetional pull. All these
quantities are proportional to M; for this reason, the mass is cancelled
from the calculatlon:

%E‘%E;fggoiﬂc;GR:goRo(l'%)

or with equation (4T)

e
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The kinetic energy required for escaping the field of gravity of
the earth (R —» ) is therefore twice the kinetic energy of a satellite
of equal welght at a small distance from the surfece of the earth. For
the former, we obtain with equation (17)

%? = &Ry = 65(km/sec)2 = 15,000 cal/g
This quantity of energy 1s not unattainable. The oxygen-methane reaction,
for instance, ylelds approximately 1/6 of it (table 6). Thus energies
are concerned which are perfectly producible. However, the velocities

to be reached are of astronomical dimensions as is shown by a comparison
of tables 1 and 5 - & hint that the movements of the stars must be traced
back to thermal energy sources in atomic reactions, not to chemical
reactions. a

Table 6 shows several reactlon heats end the mass ratio for the ideal
case, equation (41). The melting of a body does not change anything in
its molecular composition and relstively little in its structure; not even
the density changes essentially. It is therefore understandasble that the
"reaction heat" connected with melting is generally miich smaller than that
connected with a chemlcal reaction. The oxygen-hydrocarbon reaction
Op-methane, the detonating-gas reaction, and the combination of atamic to
molecular hydrogen are given as a representative for the last-named reac-
tion. It corresponds, of course, only to a thermo-chemical eguation, not
to & practical process, since the atomlic hydrogen is not stable under -
"normal" thermal conditions. Nevertheless, this hypothetical process is
very useful for the following consideration.

In regard to the structure of metter, chemical reactions are changes
in the shell of the electrons. In the case of light elements and 1light
molecules where the electron shell surrounds only few protons and neutrons,
such chenges may requlre the same energy as in the case of heavy elements.
Thus, very much higher resction heats are possible when substances of low
molar welght participete than in the case of substances of high molar _.
weight mn. . - S : -

Finally we have the heat quantity of an atomic reactlion of & = 0.005
mass defect which, of course, amounts to an extraordinarily strong atomic
reaction. The heat set free is equal.to the mass defect times the square
of the speed of light. The velocity corresponding to the equivalent
kinetic energy 1s thus equal to the speed of light multiplied by Va5 .
Changing the structure of the atoms leads to energy transformstions which
are Incompasrably larger than those of chemiecal processes. Of course, for
atomlc reactions much more than for chemical reactions, it is always true
that only part of the propellant represents really active reacting sub-
stance while another part is carried along as "dead substance." Table 6
is not supposed to reflect more than a picture of the possibilitles.
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It becomes clear thet even the mass ratios of 6.9 and 5.7 calcu-
lated for the ideal case (eq. (41)}), required for surmounting the gravity
pull, are extraordinarily high for & hydrocarbon and a detonating-gas
reaction and pose probebly unsolvable problems to the designer. (As was
emphasized before, the reaction heat in table 6 end q in equation (k1)
are only spproximately equal.) The pertaining energies expressed in
velocity squares show that these values also lie throughout considerably
below the required values of V given 1n table 5.

It is instructive to look somewhat more closely at the conditions,
for instance, 1n the case of a hydrocarbon reaction. From the known
relationships between the specific heats

Cp = Cy = R/m cp/cv =K

if follows readily that
(50)

Since in the 0y, CHy reaction the number of molecules is maintained,

the molar weight is not changed, elther, by the process and lies, wilith
m = 27, close to the value of air. With « = 1.30, equation (50) leads
with R =2 cal/(g degrees) to a value of approximately

cp = 0.32 cal/(g degrees). Thus the reaction would result in a tem-

perature lncrease of

- & - 2980 _ g o000,
AT &% " To.32

On the one hand, the temperature would be completely intolerable; on the
other, it is never reached, due to disscciation setting in, as shown by
the example for air calculsted at the beginning in connection with the
flight of & meteor. These enormous energy transformations in the rocket
combustion chamber are therefore not even desirable and the carrying along
of "dead substance" is quite welcome. The maximum velocity attainsble in
the jet can be easily given from equation (37) under the assumption of
pressure drop to vacuum p ->0. With equation (3), Wpax is

Wmax = qEE;ES = dn g 1 ‘o . . (51)
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The maximun veloelty attainable in the steedy pressure gradient, expressed by equation (51), 1s thus con-
siderably smaller than that of an unstesdy two-dimensional explosion, equation (22). There exists, also, an
epsential difference between the two processes. Whereas in the case of the steady phencmenon every pearticle
18 equal and graduslly essumes in the pressure gradient p -0, the velocity of equation (51), only & small
part of the metter inmvolved 1s distinguished by astteining the velocity of equation (22) for p +0 1n the case
of the two-dimensionsl explosion. Furthermore, it fust be noted that the flow velocilty in the unsteady two-
dimensional explosion exceeds the flow velocity of the stesdy flow only in the case of & high pressure gradient.
The pressure gradient for which both velocities ars equal can be easily determined by equating W/co eccording

to equation (24) and according to equation (37). We cbtain :

Po 2 x +1 . .. __;_-
’”F“ETI“T-‘?‘ .
or for k = 2,40

Po
2 =171 -

The speed of sound depends esgentially on the molar weight and thus,
for the mixture investigated, does not differ very much from the value
for air at the same temperature. If we assume, in consideration of mate-
rial end dissociation, an sbsolute temperature of 3,00_(_)o abs, we have

approximately cg = V1o x 350 m/sec = 1.1 km/sec and according to equa-
tion (51), with ® = 1.3, the exhaust velocity W = Wypgx = 2.8 km/sec.
This value, however, lies far below the ideal value. For leaving the
region of the pull of gravity, according to table 5 and equation (45),
W = 0.62 X 11.2 km/sec = 7 km/sec would be desirable. Somewhat more
than W =2 km/sec was attained with the V2 during the first years.

Hence, 1t follows that substances of low molar welght are highly
desirable not only as reacting masses but also as dead rocket~jet masses
for extreme speeds of travel. Due to their high sonic velocity, they
also make high exhaust velocities possible, according to equation (51).
The transformation of higher energy quantities in the combuetion chamber,
in contrast, does by no means leed to higher temperatures, compared to
heavier substances, because, according to equation (50), the specific
heat 1s much higher for smaller m. Nelther is the tendency toward dis-
soclation at all stronger for gases of small moler weight (Cf., for
instance, Hy according to reference 9.)

The application of an atomic jet, in spite of the snormous energy
transformaetions connected with it, does not immediately lead to a solu-
tion of the difficulties: Exhaust velocitles far exceedlng the flight
velocity mean an enormous waste of energy. However, use of atomic energy
as an energy source for the heating of a dead substance of low molar weight
is to be regarded as a solution promising progress. This dead substance
should, of course, be carrled along as a fluld or solid matter in order
to keep the contalner volumes tolerable. For this reason it is very
regrettable that H,, as the lightest substance by far, has a bolling

point of -253° C and, as a fluid, in addition, has very low density.

N
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A possibility of achieving the necessary mass ratios for a flight
into interstellar space or for sending out an artificial earth satellite
consists in shooting a "daughter rocket" from a "mother rocket" and pos-
sibly repeating thils procedure in several stages. It 1s evident that
the greatest part of the propellent energy utilized must be used to
accelerate the entire vehicle and only a small part can be used to the
advantage of the basic purpose. Thus, it will have to be regarded as
an extraordinary technical performsnce 1f we succeed, within the next
few years, in shooting a satelllte of 50 kg weight into an altitude of
several hundred km. Within a foreseeable time, the shooting of space
rockets will surely not become such a familiar phenomenon as the pene-
trating of meteors into the earth's atmosphere treasted at the beginning.
Certainly it will always be a very costly procedure; it 1s surely extremely
optimistic to insert for the actual pay load an expenditure of 10 times the
amount calculated in connection with equation (48), thus 150,000 cal/g.
With this digression to the questions of interplanetary aviation we shall
close the section on rockets.

7. RESUME

All problems treated have in common the high-~temperature differences
connected with high supersonic speeds - & consequence of the large kinetic
energles inherent to such flows. High temperatures appesr, therefore,
when the air in front of meteors and on fast-flying bodies is stopped.
High temperatures are necessary when high speeds are to be produced in
propulsive Jets of flying bodies. In increasing the temperature beyond
several thousand degrees, the heating is greatly reduced by dissociation
and lonization phenomena since & considerable part of the energy is used
for splitting up the molecules instead of for increasing the temperature.
The influence of the molar weight is very great. The light gases, like
hydrogen, with the considerably higher flight velocities of the molecules,
permit the achlevement of high flow veloclities more readily than geses of
high molar weight. With hydrogen as the propellant it is therefore possi-
ble to produce, in the laboratory, transient high temperatures in air, and
gases of low molar weight appear particularly sultable as the propellant-
Jet substance for rockets. With them, the astronomical velocities which
are necessary for space rockets are most nearly attainable.

The high centrifugal forces, which balence the gravity pull at the
high velocities in space, make themselves clearly felt even at supersonic
speeds. They impose & limitation on the path curvatures of flying bodies.

Trenslated by Mary L. Mshler
Naetional Advisory Committee
for Aeronautics
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TABIE 1.~ ASTRONOMICAL SPEEDS

km/h ¥m/sec
Velocity of sound ¢ 1in the stratosphere 1,080 0.30
(temperature -50° C)
Circumferential velocity of the earth at
approximately 50° latitude 1,080 0.30
Velocity of revolution of the moon about 1
the earth
Veloclty of revolution of the earth about 30
the sun
Velocity of the sun with respect to the 20
next constellation
Velocity at the edge of the universe 50,000
Velocity of light 300,000

TABLE 2.- COMPRESSION-SHOCK WAVE FOR § = NORMAL DENSITY

& . o, ) Flight |T/T [B/p | M

a‘TTJ; [cai] eaq] |m/@ |B/e alt[lt-j]ude’ (for T = 223°)
1x 103 2 x 103] 5 x 103}1 6.0] 1.3 L.5] 27| 4.8
5 x 10310 x 103} 56 x 103} 1.20}10.4| 17.8 |22.4| 280|14.8
10 x 103}20 x 103|235 x 103|1.98]12.9] 19.2 44.8[1140]29.8
20 x 103|400 x 103|500 x 103| 2.48{11.1] 18.2 89.6| 2460 |4L.1

31
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TABLE 5.- COMPARISON OF THE ENERGY FOR VERTICAL

PENETRATION OF THE ATMOSPHERE

2 _
Kinetic energy per unit mass: EE-
L o2
Resistance work per unlt mass: 2 W
rfed] 2

Heat of fusion of iron: 49 cél/g:l = O.kll}é—(km/sec)e]

TABLE 4.~ CARNOT EFFICIENCY Ne» CORRESPONDING PRESSURE RATIO OF

THE PISTON ENGINE, AND STAGNATION TEMPERATURE

OF THE RAMJET POWER PIANT

T, = 223° abs

M, N Po/P To/Te -
To Ty - 273
1 1/6 1.9 1.20 268° abs -5° ¢
3 9/1k4 37 2.80 634° abs 361° ¢
5 5/6 530 6.00 1,338° ebs 1,065° ¢
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TABIE 5.~ STARTING AND SATELLITE VELOCITIES FOR VARIOUS

DISTANCES FROM THE EARTH'S SURFACE

33

R - Ro, Vgs v, fM
or
(tem] [km/sec] [km/sec] ¢ = 330 m/sec
O 7‘9 7-9 2’-‘-
500 7.3 8.2 25
1,000 6.8 8.5 25.5
2,000 6.0 8.9 27
© [¢] 1i.2 5)4-
TABIE 6.- REACTION HEATS
a, 4 Mg + Mp
I:cal/ g] [—JE'( km/sec) 2] Mg
Heat of fusion of iron 19 0.642
Black powder 630 2,32 25
Op and CHy 2,560 4.62 6.9
0, and Hp -HLO 3,220 5.22 5.7
H -»Hp 49,200 20,22 1.3

1/2 percent mass defect

30,0002
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Figure 1.- Bow wave for-high Mach number.
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'Figure 2.- Bow wave in the stagnation region.
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Figqure 3.~ Composition of the air for normal density, as a function
of the temperature (according to G. Burkhardt (ref. 2)).
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Figure 4.~ Internal energy of m = 29g air for normal density, as a
function of the temperature (according to G. Burkhardt (ref. 2)).
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Figure 5.- Experimental drag coefficients for a sphere-and a cylinder

in axial flow (according to ref. 5).
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Figure 8.- Change of state in a sound wave.
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Figure 7.- Wave of finite amplitude.
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Figure 8.- Initial state in the shock tube. * -
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Figure 9.- Explosion process in the tube.
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Figure 10, _ Thrust body.



